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Abstract 
The paper is devoted on methods and algorithms for steady-state 
analysis of Markov chains. Basic, direct and iterative methods for 
steady-state analysis of Markov chains are concerned, where Gaussian 
Elimination method and Grassman method, as well as Power, Jacobi�s 
and Gauss-Seidel�s methods are implemented. Algorithms for 
computation of steady-state probability vector for finite Markov chains 
are developed. Comparison of numerical solutions to exact equilibrium 
solution for local-balance equation of Discrete-Time Markov Chain is 
given. Example and numerical results for feedback networks of 
Markovian queues are shown. 
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1. INTRODUCTION  

Markov processes provide very flexible, powerful, and efficient means for 
description and analysis of dynamic (communication, computer) system properties. 
Performance and dependability measures for communication networks can be derived and 
evaluated with steady-state analysis of Discrete-Time Markov Chains (DTMC) and 
Continuous-Time Markov Chains (CTMC). Direct methods and iterative methods can be 
used for numerical solution steady-state analysis of Markov chains [1]. Direct methods 
operate and modify the parameter matrix, and use a fixed amount of computation time 
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independent of the parameter values [4], but are subject to accumulation of round-off 
errors and have difficulties with sparse storage [2]. 

Iterative methods are based on the property of successive convergence to the 
desired solution. The evaluation can be terminated if iterates are sufficiently close to the 
exact value. The main advantage of iterative methods, compared with direct methods is 
that they preserve the sparsity of the parameter matrix [3], because efficient sparse 
storage schemes and efficient sparsity-preserving algorithms can be used. Other 
disadvantage of iterative methods is that convergence is not always guaranteed and 
depends on the method. The rate of convergence is highly sensitive to the values of 
entries in the parameter matrix [5]. 

One of important tasks here is receiving numerical solutions to exact equilibrium 
solution for local-balance equation of discrete-time Markov chain. This is very interesting 
for modeling of computer and communication networks, especially with heavy tailed 
traffic. These traffic processes are describing with discrete-time Markov chains, 
continuous-time Markov chains and ergodic Markov chains. That�s why in this research 
is working out algorithms for numerical solution of equilibrium for local-balance 
equation of discrete-time Markov chain. On the base of numerical solution methods is 
suggesting a procedure for steady state probability vector. 
 
2. STEADY-STATE ANALYSIS OF MARKOV CHAINS 

For computation of steady-state probability vector of ergodic Markov chains most 
often is using the following model. Setting íPí  , and ðQ0  , can be written (2.1). 

)( IPí0                                                                                                                      (2.1) 
Therefore, both for discrete-time and continuous-time Markov chains, a linear 

system (2.2) need to be solved: 
xA0                                                                                                                              (2.2) 

Due to its type of entries representing the parameters of a Markov chain, matrix A 

is singular and it can be shown that A is of rank n-1 for any Markov chain of size nS  . 

It follows immediately that the resulting set of equations is not linearly independent and 
that one of the equations is redundant. To yield a unique, positive solution, a 
normalization condition have to be applied on the solution x of equation xA0  . We 
directly impose the normalization condition into the (2.2) with (2.3). 

1x1                                                                                                                              (2.3) 
This can be regarded as substituting one of the columns (say, the last column) of 

matrix A by the unit vector. The resulting linear system of non-homogeneous equations is 
shown in (2.4). 

]1,0,...,0,0[,  bxAb                                                                                               (2.4) 
For any given ergodic continuous-time Markov chains, a discrete-time Markov 

chains can be constructed, which yields an identical steady-state probability vector as for 
the CTMC. Consider the generator matrix ][ ijqQ  of a continuous-time Markov chains, 

where is formulated (2.5), 
IQP  q/                                                                                                                    (2.5) 

where q is chosen such that ijSji q ,maxq . Setting ijSji q ,maxq  should be avoided 



 

in order to assure aperiodicity of the resulting DTMC [2]. The resulting matrix P can be 
used to determine the steady-state probability vector íð  , by solving 

1 í1íPí and . This method, is used to reduce a CTMC to a DTMC, and is 
called randomization or sometimes uniformization in the literature [3]. On the other hand, 
a transition probability matrix P of an ergodic DTMC is given, and generator matrix Q of 
a CTMC can be defined according to (2.6). 

IPQ                                                                                                                          (2.6) 
By solving ðQ0   under the condition 1ð1 , the desired steady-state probability 

vector íð   can be obtained. 
To determine the steady-state probabilities of finite Markov chains, different 

approaches for the solution of a linear system of the form xA0   are used. In this case 
both direct and iterative numerical methods and techniques can lead to closed-form 
results. While direct methods yield exact results, iterative methods are generally more 
efficient, both in time and space. Disadvantages of iterative methods are that for some of 
them no guarantee convergence given in general. Since iterative methods are 
considerably more efficient in solving Markov chains, they are commonly used for larger 
models. For smaller models with less than a few thousand states, direct methods are 
reliable and accurate. Though closed-form results are highly desirable, they can be 
obtained for only a small class of models that have some structure in their matrix. 
 
3. DIRECT METHODS FOR NUMERICAL SOLUTION 
 

The closed-form solution methods are applicable when Markov chains possess 
special structures. For Markov chains with a more general structure, we need to refer to 
numerical methods. There are two broad classes of numerical methods to solve the linear 
systems of equations: direct methods and iterative methods. Direct methods operate and 
modify the parameter matrix. They use a fixed amount of computation time independent 
of the parameter values and we don�t aim to reach convergence. The use of sparse storage 
is difficult since original zero entries can become non-zeros. Direct methods are also 
subject to accumulation of round-off errors.  

There are many direct methods for the solution of a system of linear equations. 
Some of them are restricted to certain regular structures of the parameter matrix that are 
of less importance for Markov chains, since these structures generally cannot be assumed 
in the case of a Markov chain. Among the most commonly applied techniques are the 
Gaussian elimination algorithm and a derivative of it - Grassmann's algorithm. The 
original version of the algorithm is usually referred to algorithms of Grassmann, Taksar, 
and Heyman (GTH), which are based on a renewal argument [5]. There is a newer variant 
where a simple relation to the Gaussian elimination algorithm is done. The Gaussian 
elimination algorithm suffers sometimes from numerical difficulties created by 
subtractions of nearly equal numbers. It is exactly this property that is avoided by the 
GTH algorithms and its variant through reformulations relying on regenerative properties 
of Markov chains. Cancellation errors are conveniently avoided in this way. 
 

 



 

3.1 GAUSSIAN ELIMINATION 
The idea of the algorithm is to transform the system of equations (3.1), into an 

equivalent one by applying elementary operations on the parameter matrix that preserve 
the rank of the matrix. 
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                                                                   (3.1) 

As a result, an equivalent system of linear equations specified by (3.2) with a 
triangular matrix structure is derived, from which the desired solution x, which is 
identical to the solution of the original system can be obtained: 
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                                                                   (3.2) 

If the system of linear equations has been transformed into a triangular structure, 
the final results can be obtained by means of a straightforward substitution process. 

To arrive at system (3.2), an elimination procedure first needs to be performed on 
the original system (3.1). Informally, the algorithm can be described as follows; first the 
n-th equation of (3.1) is solved for 1nx , and then 1nx  is eliminated from all other n-1 

equations. Next, the (n-1)th equation is used to solve for 2nx , and, again, 2nx  is 
eliminated from the remaining n-2 equations, and so forth. Finally, (3.2) results, where 

)(
,
k
jia  denotes the coefficient of ix  in the (j+1)-th equation, obtained after the k-th 

elimination step. 
The Gaussian elimination procedure takes advantage of elementary matrix 

operations that preserve the rank of the matrix. Such elementary operations correspond to 
interchanging of equations, multiplication of equations by a real-valued constant, and 
addition of a multiple of an equation to another equation. In matrix terms, the essential 
part of Gaussian elimination is provided by the factorization of the parameter matrix A 
into the components of an upper triangular matrix U and a lower triangular matrix L.  
As a result of the factorization of the parameter matrix A, the computation of the result 
vector x can split into two simpler steps: 

.yLxULxAb                                                                                                     (3.3) 
Now the Gaussian elimination algorithm can be summarized as follows from Fig. 

3.1. 



 

 

Fig. 3.1 Algorithm for Gaussian Elimination 
 

3.2 THE GRASSMANN ALGORITHM 
Grassmann's algorithm is a numerically stable variant of the Gaussian elimination 

procedure. The algorithm completely avoids subtractions and it is therefore less sensitive 
to rounding and cancellation errors caused by the subtraction of nearly equal numbers. 
Grassmann's algorithm was originally introduced for the analysis of ergodic, discrete-
time Markov chains X = {Xn; n = 0, 1,...} and was based on arguments from the theory of 
regenerative processes [3]. 

The transition rates of a new Markov chain, having one state less than the original 

one, are defined. This elimination step, i.e., the computation of ijq ,  is achieved merely 

by adding non-negative quantities to originally non-negative values ijq ij ,, . Only the 

diagonal elements iiq ,  and iiq ,  are negative.  

The elimination procedure is iteratively applied to the generator matrix with 

entries )(
,
k
ijq  of stepwise reduced state spaces until an upper triangular matrix results, 

where )(
,
k
ijq  denotes the matrix entries after having applied elimination 

step 11,  nkk . Finally, each element )1(
,
n

iiq  on the main diagonal is equal to -1. 

The elimination is followed by a substitution process to express the relations of 
the state probabilities to each other. To yield the final state probability vector the 
normalization condition must be applied. Grassmann's algorithm is presented in terms of 
a CTMC generator matrix and the parameter matrix must initially be properly defined: 

 STEP 1: Construct the parameter matrix A 
and the right-side vector b according to: 

]1,0,...,0,0[,  bxAb ; 

STEP 2:  Carry out elimination steps or, 
apply the standard algorithm to split the 
parameter matrix A into upper triangular 
matrix U and lower triangular matrix L 
such that ULA   holds. Note that the 
parameters of U can be computed with: 
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and the computation of L can be 
deliberately avoided. 

STEP 3: Compute the intermediate results 
y according to byL   or, compute the 
intermediate results with the result from 
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STEP 4: Perform the substitution to yield 
the final result x according to yxU   by 
applying the formulae: 
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Fig. 3.2 The Grassmann algorithm 
In matrix notation, the parameter matrix A is decomposed into factors of an upper 

triangular matrix U and a lower triangular matrix L such that the following equations hold. 
xUL.xA0                                                                                                                            (3.4) 

Of course, any solution of xU0   is also a solution of the original equation xA0  . 
Therefore, there is no need to represent L explicitly. Although cancellation errors are being 
avoided with Grassmann's algorithm, rounding errors can still occur, propagate, and accumulate 
during the computation. Therefore, applicability of the algorithm is also limited to medium size 
(around 500 states) Markov models. 
 

4. ITERATIVE METHODS FOR NUMERICAL SOLUTION 
The main advantage of iterative methods over direct methods is that they preserve the 

sparsity of the parameter matrix and efficient sparsity-preserving algorithms and sparse storage 
schemes can be used. A good initial estimate can speed up the computation considerably. The 
evaluation can be terminated if the iterates are sufficiently close to the exact value, i.e., a pre-
specified tolerance is reached. Finally, because the parameter matrix is not changed in the 
iteration process, iterative methods are not subject to accumulation of round-off errors. The 
main disadvantage of iterative methods is that convergence is not always guaranteed and 
depending on the method, the rate of convergence is highly sensitive to the values of entries in 
the parameter matrix. 
 
4.1. CONVERGENCE OF ITERATIVE METHODS 

Convergence is a very important issue for iterative methods that must be dealt 
consciously. A heuristic approach can be applied for choosing appropriate techniques for 
decisions on convergence, but there are no general algorithms for the selection of such a 
technique. Because the desired solution vector is not known, an estimate of the error must be 
used to determine convergence. A tolerance level   must be specified to provide a measure of 

how close the current iteration vector )(kx  is to the desired solution vector x. New York, Some 

distance measures are often used to evaluate the current iteration vector )(kx  in relation to some 

earlier iteration vectors klx l ,)( . If the current iteration vector is "close enough" to earlier 
ones with respect to  , then this condition is taken as an indicator of convergence to the final 
result. If   is too small, convergence could become very slow or not take place at all. If   is 
too large, accuracy requirements could be violated or, worse, convergence could be wrongly 
assumed. Some appropriate norm functions have to be applied in order to compare different 
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STEP 4: For 1,...,1,0  nl : 
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iteration vectors. Size and type of the parameter matrix should be taken into consideration for 
the right choice of such a norm function. Concerning the right choice of   and the norm 
function, we can say that components ix  of the solution vector can differ significantly from 
each other. 
 
4.2 POWER METHOD 

The Power method is a reliable iterative method for the computation of the steady-state 
probability vector of finite ergodic Markov chains. It sometimes tends to converge slowly and 
the solely condition needed for convergence is the transition probability matrix P to be 
aperiodic, and then irreducibility is not necessary. The power method follows the transient 
behavior of the underlying discrete-time Markov chains until some stationary, not necessarily 
steady-state, convergence is reached. Therefore, it can also be used as a method for computing 
the transient state probability vector )(ní  of a DTMC. 

Equation íPí   suggests starting with an initial guess of some probability vector )0(í  
and repeatedly multiplying it by the transition probability matrix P until convergence to v is 

reached, with íí 
)(lim i

i . Since ergodicity, or at least aperiodicity of the underlying 

Markov chain are assumed, this procedure is guaranteed to converge to the desired fixed point 
of the unique steady-state probability vector. A single iteration step is as follows from (4.1). 

0,)()1(  iii Píí .                                                                                                              (4.1) 
The relation between the iteration vector at step i and the initial probability vector can be 
presented as (4.2). 

0,)0()(  iii Píí .   (4.2) 
To yield the final result of the steady-state probability vector v only a renormalization 

remains to be performed. The speed of convergence of the power method depends on the 
relative sizes of the eigenvalues. The closer non-dominant eigenvalues are equals to 1, which 
slower the convergence. The algorithm of the power method is shown on Fig. 3.1. 

 

Fig. 4.1 The power method algorithm 
 

4.3. JACOBI�S METHOD 
Let define the system of linear equations (4.3). 

xAb  .   (4.3) 
The normalization condition may or may not be incorporated in (4.3). The parameters of 

both DTMC and CTMC are given by the entries of the matrix ][ ijaA . The solution vector x 
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will contain the unconditional state probabilities. If the normalization is incorporated, we have 
]1,0,...,0,0[b , and 0b  otherwise. Consider the j-th equation from the system (4.3) as (4.4). 
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iijj xab .   (4.4) 

Solving (4.4) for jx  leads to (4.5). 

.,

jj

jii
iijj

j a

xab

x




    (4.5) 

Any given approximate solution ]�,...,�,�[� 110  nxxxx  can be inserted for the variables 

jixi , , on the right side of (4.5). From these intermediate values, better estimates of the jx  

on the left side of the equation may be obtained. The iterative method requires applying this 

procedure repeatedly and in parallel for all n equations. The values kx  of the k-th iteration step 
are computed from values obtained from the (k - l)-st step for each equation independently as 
(4.6). 
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The iteration may be started with an arbitrary initial vector 0x . Note that the equations 
can be evaluated in parallel, a fact that can be used as a means for computational speed-up. The 
method is called method of simultaneous displacement or, simply, the Jacobi method. Since the 
method is quite simple, it suffers from poor convergence and hence is rarely applied in its raw 
form. The algorithm is presented on Fig. 4.2. 

 

Fig. 4.2 The Jacobi�s method algorithm 
Splitting the matrix A=D-L-U into its constituents of the diagonal matrix D, the strictly 

lower-triangular matrix L, and the strictly upper-triangular matrix U provide a way to present 
the main computation step of the Jacobi�s method in matrix notation, as is shown in (4.7). 

  1)1()( )(   DLUxbx kk .   (4.7) 
The Jacobi�s method is of less practical importance due to its slow pattern of 

convergence. But techniques have been derived to speed up its convergence, resulting in well-
known algorithms such as Gauss-Seidel iteration. 
 

 
STEP 1: Define parameter matrix A and b 
properly from generator matrix Q or 
transition probability matrix P. 

 Choose initial vector )0(x ; 

 Choose convergence criterion  . 

 Choose some norm function 
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4.4 GAUSS-SEIDEL METHOD 
To improve convergence, a given method often needs to be changed only slightly. We 

can serialize the procedure from (4.6) and take advantage of the already updated new estimates 
in each step. Assuming the computations to be arranged in order ,1,...,1,0 n , where nS  , it 

immediately follows, that for calculation of the estimates )(k
jx , all j previously computed 

estimates jix k
i ,)( , can be used in the computation. Taking advantage of the more up-to-date 

information, we can significantly speed up the convergence. The resulting method is called the 
Gauss-Seidel iteration and it main principle is presented in (4.8). 
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Note that the order in which the estimates )(k
jx  are calculated in each iteration step can 

have a crucial impact on the speed of convergence. Most often, the matrices of Markov chains 
are sparse and the interdependencies between the equations are limited to a certain degree, and 
parallel evaluation might still be possible, even if the most up-to-date information is 
incorporated in each computation step. The equations can deliberately be arranged so that the 
interdependencies become more or less effective for the convergence process. Apparently, a 
trade-off exists between the pattern of convergence and possible speedup due to parallelism. In 
matrix notation, the Gauss-Seidel iteration step is written as (4.9). 

  1,)( 1)1()(   kkk UDLxbx .   (4.9) 

Reflecting the Gauss-Seidel step more obviously, we can rewrite his approach as (4.10). 

  1,1)1()()(   kkkk DLxUxbx . (4.10) 

 
5. COMPARISON OF NUMERICAL SOLUTION METHODS 
5.1. EXAMPLE 1  

We consider an arbitrary connected three-node network with four customers. The state 
transition rate diagram is shown in Fig. 5.1. In this diagram are represented possible transitions 
between nodes of Markov chain. The transition rates between the states are taken equal to 

1.04.05.0 321   . The numeration of the states represents the total number of 
customers in each node. Consider receiving of local balance for two examples. 

 

 
Fig. 5.1 State-transition rate diagram showing local balance for a) example 1 and b) example2 
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Firstly we write down the local balance equations, and then we find the solution, by a 
substitution process, from where we get the exact steady-state probabilities, as indicated in 
Table 5.1. Next we follow the algorithm in Fig 3.1 and achieve the results for the steady state 
probabilities from the Gaussian elimination algorithm. Comparing the results with the exact 
ones we may say that the Gaussian elimination algorithm gives precise results (to the eight 
decimal) and only in states 9 and 11 mistakes are found. 

 

State 

N
um

be
r 

Exact 
Value 

Computed 
Value E

rr
or

 

1 2 3 4 5 

1 2 3 4 5 (3,1,0) 8 0,009402703 0,009402703 0 

(0,0,4) 1 0,000962837 0,000962837 0 (4,0,0) 9 0,002350674 0,002350674 0.000000002 

(0,1,3) 2 0,004814184 0,004814184 0 (3,0,1) 10 0,00188054 0,00188054 0 

(0,2,2) 3 0,024070919 0,024070919 0 (2,0,2) 11 0,001504433 0,001504433 0.000000001 

(0,3,1) 4 0,120354595 0,120354595 0 (1,0,3) 12 0,001203546 0,001203546 0 

(0,4,0) 5 0,601772974 0,601772974 0 (1,1,2) 13 0,00601773 0,00601773 0 

(1,3,0) 6 0,150446243 0,150446243 0 (1,2,1) 14 0,030088649 0,030088649 0 

(2,2,0) 7 0,037510811 0,037510811 0 (2,1,1) 15 0,007522162 0,007522162 0 

Table 5.1 Comparison of numerical results for calculated steady-state probabilities using exact 
method and Gaussian elimination 

 
5.2 EXAMPLE 2 

Consider two customers circulating among three nodes. When a customer has received 
service of mean duration 1/1  at the first station, it queues with probability 12p  at station two 

for service of mean duration 2/1  , or with 13p at station three with a mean service duration 

3/1  . After completion of services at stations two or three, customers return with probability 1 
back to station one. The state transition rate diagram is shown in Fig. 5.1 (b). In this diagram we 
represent a continuous-time Markov chain with possible transitions between nodes. The 
transition rates between the states are 6.04.0321 1312321  pp . The 
numeration of the states represents the total number of customers in each node. 

Firstly is computed the exact values for the steady state probabilities, using a 
substitution process. These values can be for comparison with the iteration vector. Next were 
used the power method algorithm to compute the steady state probabilities, reaching 45 
iterations form where was received accuracy to the sixth decimal, as is shown in Table 5.2. 
Afterward from algorithm on Fig. 4.2 were computed probabilities according to Jacobi�s 
method. The obtained results were better, but for their receiving it is necessary to provide much 
more iteration steps � 300. The power method converges faster for this network and gives 
results which are enough precise. 

 
 
 
 
 
 
 
 



 

Power Jacobi 
State Exact 

45  Error 300  Error 

(2,0,0) 0.6578947368 0.6578940535 -0,0000006833 0.6578947398 0,0000000030 

(1,1,0) 0.1315789474 0.131579464 0,0000005166 0.1315789172 -0,0000000302 

(0,2,0) 0.1315789474 0.131578764 -0,0000001834 0.1315789478 0,0000000004 

(1,0,1) 0.02631578947 0.0263160561 0,0000002666 0.02631578619 -0,0000000033 

(0,1,1) 0.02631578947 0.0263157728 -0,0000000167 0.02631578846 -0,0000000010 

(0,0,2) 0.02631578947 0.0263159728 0,0000001833 0.02631582059 0,0000000311 

Table 5.2 Comparison of numerical results for calculated steady-state probabilities using exact 
method, Power method and Jacobi�s method 

 
CONCLUSIONS 

Basic direct and iterative methods for steady-state analysis of Markov chains are 
examined by Gaussian Elimination method and Grassman method, as well as Power, Jacobi�s 
and Gauss-Seidel�s method. Numerical results for two networks are compared, using exact 
methods, Gaussian elimination, Power and Jacobi�s method. The Jacobi�s method is of less 
practical importance due to its slow pattern of convergence. The Power method is a reliable 
iterative method, though it sometimes tends to converge slowly. It can also be used as a method 
for computing the transient state probability vector of a DTMC. Applicability of the Gaussian 
elimination algorithm is limited to medium size (around 500 states) Markov models and it 
suffers from round-off and cancellation errors, as well as numerical difficulties created by 
subtractions of nearly equal numbers, but gives good results. 
 
 
 
BIBLIOGRAPHY 
 
[1] Bhalai, S. (2002), Markov Decision Processes: the control of high-dimensional systems, 
Universal Press, Amsterdam, The Netherlands, 142 pp; 
[2] Bolch, G., Greiner, S., Meer, H, Trivedi, K., (1998), Queueing Networks and Markov 
Chains: Modelling and Performance Evaluation with Computer Sciene Applications, New York, 
John Wiley& Sons, 726pp; 
[3] Boxma, O., Koole, G., Liu, Z. (1994), �Queueing-theoretic solution methods for models of 
parallel and distributed systems�, Performance Evaluation of Parallel and Distributed Systems - 
Solution Methods, CWI Tract 105 & 106, CWI, Amsterdam, The Netherlands, pp. 1-24; 
[4] Radev, D., Denchev, V., Rashkova, E. (2005), �Approximations Algorithms for Steady-State 
Solutions of Markov Chains�, Proceedings of the International Conference on Computer 
Systems and Technologies CompSysTech�2005, Varna, Bulgaria; 
[5] Trivedi, K., (2001), Probability and Statistics with Reliability, Queuing, and Computer 
Science Applications, New York, John Willey & Sons, 830pp. 


