

STEADY-STATE SOLUTIONS OF MARKOV CHAINS

DIMITAR RADEV
Department of Communication Technique & Technologies, University of Rousse, Bulgaria

VLADIMIR DENCHEV
ELENA RASHKOVA
Department of Communication Technique & Technologies, University of Rousse, Bulgaria

Abstract
The paper is devoted on methods and algorithms for steady-state
analysis of Markov chains. Basic, direct and iterative methods for
steady-state analysis of Markov chains are concerned, where Gaussian
Elimination method and Grassman method, as well as Power, Jacobi�s
and Gauss-Seidel�s methods are implemented. Algorithms for
computation of steady-state probability vector for finite Markov chains
are developed. Comparison of numerical solutions to exact equilibrium
solution for local-balance equation of Discrete-Time Markov Chain is
given. Example and numerical results for feedback networks of
Markovian queues are shown.

Keywords: Steady-State Probabilities, Queuing Theory, Discrete-Time
Markov Chains, Numerical Methods, Approximation Techniques

1. INTRODUCTION

Markov processes provide very flexible, powerful, and efficient means for
description and analysis of dynamic (communication, computer) system properties.
Performance and dependability measures for communication networks can be derived and
evaluated with steady-state analysis of Discrete-Time Markov Chains (DTMC) and
Continuous-Time Markov Chains (CTMC). Direct methods and iterative methods can be
used for numerical solution steady-state analysis of Markov chains [1]. Direct methods
operate and modify the parameter matrix, and use a fixed amount of computation time

The 7th Balkan Conference on Operational
Research

�BACOR 05�
Constanta, May 2005, Romania

independent of the parameter values [4], but are subject to accumulation of round-off
errors and have difficulties with sparse storage [2].

Iterative methods are based on the property of successive convergence to the
desired solution. The evaluation can be terminated if iterates are sufficiently close to the
exact value. The main advantage of iterative methods, compared with direct methods is
that they preserve the sparsity of the parameter matrix [3], because efficient sparse
storage schemes and efficient sparsity-preserving algorithms can be used. Other
disadvantage of iterative methods is that convergence is not always guaranteed and
depends on the method. The rate of convergence is highly sensitive to the values of
entries in the parameter matrix [5].

One of important tasks here is receiving numerical solutions to exact equilibrium
solution for local-balance equation of discrete-time Markov chain. This is very interesting
for modeling of computer and communication networks, especially with heavy tailed
traffic. These traffic processes are describing with discrete-time Markov chains,
continuous-time Markov chains and ergodic Markov chains. That�s why in this research
is working out algorithms for numerical solution of equilibrium for local-balance
equation of discrete-time Markov chain. On the base of numerical solution methods is
suggesting a procedure for steady state probability vector.

2. STEADY-STATE ANALYSIS OF MARKOV CHAINS

For computation of steady-state probability vector of ergodic Markov chains most
often is using the following model. Setting íPí  , and ðQ0  , can be written (2.1).

)(IPí0  (2.1)
Therefore, both for discrete-time and continuous-time Markov chains, a linear

system (2.2) need to be solved:
xA0  (2.2)

Due to its type of entries representing the parameters of a Markov chain, matrix A

is singular and it can be shown that A is of rank n-1 for any Markov chain of size nS  .

It follows immediately that the resulting set of equations is not linearly independent and
that one of the equations is redundant. To yield a unique, positive solution, a
normalization condition have to be applied on the solution x of equation xA0  . We
directly impose the normalization condition into the (2.2) with (2.3).

1x1 (2.3)
This can be regarded as substituting one of the columns (say, the last column) of

matrix A by the unit vector. The resulting linear system of non-homogeneous equations is
shown in (2.4).

]1,0,...,0,0[,  bxAb (2.4)
For any given ergodic continuous-time Markov chains, a discrete-time Markov

chains can be constructed, which yields an identical steady-state probability vector as for
the CTMC. Consider the generator matrix][ijqQ of a continuous-time Markov chains,

where is formulated (2.5),
IQP  q/ (2.5)

where q is chosen such that ijSji q ,maxq . Setting ijSji q ,maxq should be avoided

in order to assure aperiodicity of the resulting DTMC [2]. The resulting matrix P can be
used to determine the steady-state probability vector íð  , by solving

1 í1íPí and . This method, is used to reduce a CTMC to a DTMC, and is
called randomization or sometimes uniformization in the literature [3]. On the other hand,
a transition probability matrix P of an ergodic DTMC is given, and generator matrix Q of
a CTMC can be defined according to (2.6).

IPQ  (2.6)
By solving ðQ0  under the condition 1ð1 , the desired steady-state probability

vector íð  can be obtained.
To determine the steady-state probabilities of finite Markov chains, different

approaches for the solution of a linear system of the form xA0  are used. In this case
both direct and iterative numerical methods and techniques can lead to closed-form
results. While direct methods yield exact results, iterative methods are generally more
efficient, both in time and space. Disadvantages of iterative methods are that for some of
them no guarantee convergence given in general. Since iterative methods are
considerably more efficient in solving Markov chains, they are commonly used for larger
models. For smaller models with less than a few thousand states, direct methods are
reliable and accurate. Though closed-form results are highly desirable, they can be
obtained for only a small class of models that have some structure in their matrix.

3. DIRECT METHODS FOR NUMERICAL SOLUTION

The closed-form solution methods are applicable when Markov chains possess
special structures. For Markov chains with a more general structure, we need to refer to
numerical methods. There are two broad classes of numerical methods to solve the linear
systems of equations: direct methods and iterative methods. Direct methods operate and
modify the parameter matrix. They use a fixed amount of computation time independent
of the parameter values and we don�t aim to reach convergence. The use of sparse storage
is difficult since original zero entries can become non-zeros. Direct methods are also
subject to accumulation of round-off errors.

There are many direct methods for the solution of a system of linear equations.
Some of them are restricted to certain regular structures of the parameter matrix that are
of less importance for Markov chains, since these structures generally cannot be assumed
in the case of a Markov chain. Among the most commonly applied techniques are the
Gaussian elimination algorithm and a derivative of it - Grassmann's algorithm. The
original version of the algorithm is usually referred to algorithms of Grassmann, Taksar,
and Heyman (GTH), which are based on a renewal argument [5]. There is a newer variant
where a simple relation to the Gaussian elimination algorithm is done. The Gaussian
elimination algorithm suffers sometimes from numerical difficulties created by
subtractions of nearly equal numbers. It is exactly this property that is avoided by the
GTH algorithms and its variant through reformulations relying on regenerative properties
of Markov chains. Cancellation errors are conveniently avoided in this way.

3.1 GAUSSIAN ELIMINATION
The idea of the algorithm is to transform the system of equations (3.1), into an

equivalent one by applying elementary operations on the parameter matrix that preserve
the rank of the matrix.

.

,
,

111,111,101,0

111,111,101,0

010,110,100,0












nnnnnn

nn

nn

bxaxaxa

bxaxaxa
bxaxaxa







 (3.1)

As a result, an equivalent system of linear equations specified by (3.2) with a
triangular matrix structure is derived, from which the desired solution x, which is
identical to the solution of the original system can be obtained:

.

,
,

0
11

)0(
1,11

)0(
1,10

)0(
1,0

)2(
11

)2(
1,10

)2(
1,0

)1(
00

)1(
0,0












nnnnnn

nnn

nn

bxaxaxa

bxaxa
bxa




 (3.2)

If the system of linear equations has been transformed into a triangular structure,
the final results can be obtained by means of a straightforward substitution process.

To arrive at system (3.2), an elimination procedure first needs to be performed on
the original system (3.1). Informally, the algorithm can be described as follows; first the
n-th equation of (3.1) is solved for 1nx , and then 1nx is eliminated from all other n-1

equations. Next, the (n-1)th equation is used to solve for 2nx , and, again, 2nx is
eliminated from the remaining n-2 equations, and so forth. Finally, (3.2) results, where

)(
,
k
jia denotes the coefficient of ix in the (j+1)-th equation, obtained after the k-th

elimination step.
The Gaussian elimination procedure takes advantage of elementary matrix

operations that preserve the rank of the matrix. Such elementary operations correspond to
interchanging of equations, multiplication of equations by a real-valued constant, and
addition of a multiple of an equation to another equation. In matrix terms, the essential
part of Gaussian elimination is provided by the factorization of the parameter matrix A
into the components of an upper triangular matrix U and a lower triangular matrix L.
As a result of the factorization of the parameter matrix A, the computation of the result
vector x can split into two simpler steps:

.yLxULxAb  (3.3)
Now the Gaussian elimination algorithm can be summarized as follows from Fig.

3.1.

Fig. 3.1 Algorithm for Gaussian Elimination

3.2 THE GRASSMANN ALGORITHM
Grassmann's algorithm is a numerically stable variant of the Gaussian elimination

procedure. The algorithm completely avoids subtractions and it is therefore less sensitive
to rounding and cancellation errors caused by the subtraction of nearly equal numbers.
Grassmann's algorithm was originally introduced for the analysis of ergodic, discrete-
time Markov chains X = {Xn; n = 0, 1,...} and was based on arguments from the theory of
regenerative processes [3].

The transition rates of a new Markov chain, having one state less than the original

one, are defined. This elimination step, i.e., the computation of ijq , is achieved merely

by adding non-negative quantities to originally non-negative values ijq ij ,, . Only the

diagonal elements iiq , and iiq , are negative.

The elimination procedure is iteratively applied to the generator matrix with

entries)(
,
k
ijq of stepwise reduced state spaces until an upper triangular matrix results,

where)(
,
k
ijq denotes the matrix entries after having applied elimination

step 11,  nkk . Finally, each element)1(
,
n

iiq on the main diagonal is equal to -1.

The elimination is followed by a substitution process to express the relations of
the state probabilities to each other. To yield the final state probability vector the
normalization condition must be applied. Grassmann's algorithm is presented in terms of
a CTMC generator matrix and the parameter matrix must initially be properly defined:

 STEP 1: Construct the parameter matrix A
and the right-side vector b according to:

]1,0,...,0,0[,  bxAb ;

STEP 2: Carry out elimination steps or,
apply the standard algorithm to split the
parameter matrix A into upper triangular
matrix U and lower triangular matrix L
such that ULA  holds. Note that the
parameters of U can be computed with:
























 ,,

,,...,2,1
0,...,2,1,0

)1(
,

)1(
,)1()1(

)(

otherwise
a

a
aa

knnni
knknj

a

k
knkn

k
jknk

kn
k

ij

k
ij

and the computation of L can be
deliberately avoided.

STEP 3: Compute the intermediate results
y according to byL  or, compute the
intermediate results with the result from

),...,,(1
)2(

1
)1(

0 
 n

nn bbbxU according to:

.0,...,,1

,
)1(

,

)1(
,)1()1()(

knknjwhere
a

a
bbb

k
knkn

k
jknk

kn
k

j
k

j














STEP 4: Perform the substitution to yield
the final result x according to yxU  by
applying the formulae:

.1,...,2,1,

,

1

0
)(

,

)(
,

)(
,

)(

)1(
0,0

)1(
0

0





















njx
a

a

a

b
x

a

b
x

k

j

k
jn

jj

jn
jk

jn
jj

jn
j

j

n

n

Fig. 3.2 The Grassmann algorithm
In matrix notation, the parameter matrix A is decomposed into factors of an upper

triangular matrix U and a lower triangular matrix L such that the following equations hold.
xUL.xA0  (3.4)

Of course, any solution of xU0  is also a solution of the original equation xA0  .
Therefore, there is no need to represent L explicitly. Although cancellation errors are being
avoided with Grassmann's algorithm, rounding errors can still occur, propagate, and accumulate
during the computation. Therefore, applicability of the algorithm is also limited to medium size
(around 500 states) Markov models.

4. ITERATIVE METHODS FOR NUMERICAL SOLUTION
The main advantage of iterative methods over direct methods is that they preserve the

sparsity of the parameter matrix and efficient sparsity-preserving algorithms and sparse storage
schemes can be used. A good initial estimate can speed up the computation considerably. The
evaluation can be terminated if the iterates are sufficiently close to the exact value, i.e., a pre-
specified tolerance is reached. Finally, because the parameter matrix is not changed in the
iteration process, iterative methods are not subject to accumulation of round-off errors. The
main disadvantage of iterative methods is that convergence is not always guaranteed and
depending on the method, the rate of convergence is highly sensitive to the values of entries in
the parameter matrix.

4.1. CONVERGENCE OF ITERATIVE METHODS

Convergence is a very important issue for iterative methods that must be dealt
consciously. A heuristic approach can be applied for choosing appropriate techniques for
decisions on convergence, but there are no general algorithms for the selection of such a
technique. Because the desired solution vector is not known, an estimate of the error must be
used to determine convergence. A tolerance level  must be specified to provide a measure of

how close the current iteration vector)(kx is to the desired solution vector x. New York, Some

distance measures are often used to evaluate the current iteration vector)(kx in relation to some

earlier iteration vectors klx l ,)(. If the current iteration vector is "close enough" to earlier
ones with respect to  , then this condition is taken as an indicator of convergence to the final
result. If  is too small, convergence could become very slow or not take place at all. If  is
too large, accuracy requirements could be violated or, worse, convergence could be wrongly
assumed. Some appropriate norm functions have to be applied in order to compare different

STEP 1:



 forDTMC
forCTMC

,
,

IP
QA

STEP 2: For 1,...,2,1  nnl :























































.,0
,1

1
,1
,

,

,,

1

0

)1(
,

)1(
,

)1(
,)1(

,

1

0

)1(
,

)1(
,

)(
,

lilj
lij

li
j
ij

a

aa
a

li
lj

a

a

a
l

m

ln
ml

ln
il

ln
ljln

ij

l

m

ln
ml

ln
ij

ln
ij

STEP 3: For 1,...,2,1  nl :

.
1

0

)(





l

i

ln
ilil axx

STEP 4: For 1,...,1,0  nl :

 .
1

0










n

j
j

i

i

i

x

x



iteration vectors. Size and type of the parameter matrix should be taken into consideration for
the right choice of such a norm function. Concerning the right choice of  and the norm
function, we can say that components ix of the solution vector can differ significantly from
each other.

4.2 POWER METHOD

The Power method is a reliable iterative method for the computation of the steady-state
probability vector of finite ergodic Markov chains. It sometimes tends to converge slowly and
the solely condition needed for convergence is the transition probability matrix P to be
aperiodic, and then irreducibility is not necessary. The power method follows the transient
behavior of the underlying discrete-time Markov chains until some stationary, not necessarily
steady-state, convergence is reached. Therefore, it can also be used as a method for computing
the transient state probability vector)(ní of a DTMC.

Equation íPí  suggests starting with an initial guess of some probability vector)0(í
and repeatedly multiplying it by the transition probability matrix P until convergence to v is

reached, with íí 
)(lim i

i . Since ergodicity, or at least aperiodicity of the underlying

Markov chain are assumed, this procedure is guaranteed to converge to the desired fixed point
of the unique steady-state probability vector. A single iteration step is as follows from (4.1).

0,)()1( iii Píí . (4.1)
The relation between the iteration vector at step i and the initial probability vector can be
presented as (4.2).

0,)0()( iii Píí . (4.2)
To yield the final result of the steady-state probability vector v only a renormalization

remains to be performed. The speed of convergence of the power method depends on the
relative sizes of the eigenvalues. The closer non-dominant eigenvalues are equals to 1, which
slower the convergence. The algorithm of the power method is shown on Fig. 3.1.

Fig. 4.1 The power method algorithm

4.3. JACOBI�S METHOD
Let define the system of linear equations (4.3).

xAb  . (4.3)
The normalization condition may or may not be incorporated in (4.3). The parameters of

both DTMC and CTMC are given by the entries of the matrix][ijaA . The solution vector x

STEP 1: Select q appropriately:




 ;/ IQ
P,A q

 )0(
1

)0(
1

)0(
0

)0(,...,,  níííí .

Select convergence criterion  , and let
0n . Define some vector norm function

  lnf ln ,,)()(íí .

Set convergence = false.

STEP 2:Repeat until convergence:

STEP 2.1: Aíí)()1(nn  ;

STEP 2.2: If   nlf ln  ,,)1()1(íí

 THEN convergence = true;

STEP 2.3: 1,1  llnn .

STEP 3:)(ní
í
ð






.

will contain the unconditional state probabilities. If the normalization is incorporated, we have
]1,0,...,0,0[b , and 0b otherwise. Consider the j-th equation from the system (4.3) as (4.4).





Si

iijj xab . (4.4)

Solving (4.4) for jx leads to (4.5).

.,

jj

jii
iijj

j a

xab

x




 (4.5)

Any given approximate solution]�,...,�,�[� 110  nxxxx can be inserted for the variables

jixi , , on the right side of (4.5). From these intermediate values, better estimates of the jx

on the left side of the equation may be obtained. The iterative method requires applying this

procedure repeatedly and in parallel for all n equations. The values kx of the k-th iteration step
are computed from values obtained from the (k - l)-st step for each equation independently as
(4.6).

Sj
a

xab

x
jj

jii

k
iijj

k
j 









,

)1(

)(. (4.6)

The iteration may be started with an arbitrary initial vector 0x . Note that the equations
can be evaluated in parallel, a fact that can be used as a means for computational speed-up. The
method is called method of simultaneous displacement or, simply, the Jacobi method. Since the
method is quite simple, it suffers from poor convergence and hence is rarely applied in its raw
form. The algorithm is presented on Fig. 4.2.

Fig. 4.2 The Jacobi�s method algorithm
Splitting the matrix A=D-L-U into its constituents of the diagonal matrix D, the strictly

lower-triangular matrix L, and the strictly upper-triangular matrix U provide a way to present
the main computation step of the Jacobi�s method in matrix notation, as is shown in (4.7).

  1)1()()(  DLUxbx kk . (4.7)
The Jacobi�s method is of less practical importance due to its slow pattern of

convergence. But techniques have been derived to speed up its convergence, resulting in well-
known algorithms such as Gauss-Seidel iteration.

STEP 1: Define parameter matrix A and b
properly from generator matrix Q or
transition probability matrix P.

 Choose initial vector)0(x ;

 Choose convergence criterion  .

 Choose some norm function

  lkf lk ,,)()(xx .

 Split parameter matrix A=D-L-U.

 convergence=false, and 1 lk .

STEP 2: Repeat until convergence:

STEP 2.1:   1)1()()(  DLUxbx kk ;

STEP 2.2: If    )()(lkkf xx

 Then convergence =true;

Else  klandkk ,...,11  .

STEP 3:








 1

0

)(

)(

n

j

k
j

k

x

x
í
ð .

4.4 GAUSS-SEIDEL METHOD
To improve convergence, a given method often needs to be changed only slightly. We

can serialize the procedure from (4.6) and take advantage of the already updated new estimates
in each step. Assuming the computations to be arranged in order ,1,...,1,0 n , where nS  , it

immediately follows, that for calculation of the estimates)(k
jx , all j previously computed

estimates jix k
i ,)(, can be used in the computation. Taking advantage of the more up-to-date

information, we can significantly speed up the convergence. The resulting method is called the
Gauss-Seidel iteration and it main principle is presented in (4.8).

Sj
a

xaxab

x
jj

j

i

n

ji

k
iij

k
iijj

k
j 














 










,

1

0

1

1

)1()(

)(. (4.8)

Note that the order in which the estimates)(k
jx are calculated in each iteration step can

have a crucial impact on the speed of convergence. Most often, the matrices of Markov chains
are sparse and the interdependencies between the equations are limited to a certain degree, and
parallel evaluation might still be possible, even if the most up-to-date information is
incorporated in each computation step. The equations can deliberately be arranged so that the
interdependencies become more or less effective for the convergence process. Apparently, a
trade-off exists between the pattern of convergence and possible speedup due to parallelism. In
matrix notation, the Gauss-Seidel iteration step is written as (4.9).

  1,)(1)1()(  kkk UDLxbx . (4.9)

Reflecting the Gauss-Seidel step more obviously, we can rewrite his approach as (4.10).

  1,1)1()()(  kkkk DLxUxbx . (4.10)

5. COMPARISON OF NUMERICAL SOLUTION METHODS
5.1. EXAMPLE 1

We consider an arbitrary connected three-node network with four customers. The state
transition rate diagram is shown in Fig. 5.1. In this diagram are represented possible transitions
between nodes of Markov chain. The transition rates between the states are taken equal to

1.04.05.0 321   . The numeration of the states represents the total number of
customers in each node. Consider receiving of local balance for two examples.

Fig. 5.1 State-transition rate diagram showing local balance for a) example 1 and b) example2

002011020

101110

200

112p

3

33 2
2

2112p 113p

113p

113p 112p

040031004 013 022

130121103 112

220211202

310301

400

1
1 1 1

1
1 1

1
1

1

3 3 3 3

3 3 3

3 3

3

2

2

2 2

2

22

2

2

2

Firstly we write down the local balance equations, and then we find the solution, by a
substitution process, from where we get the exact steady-state probabilities, as indicated in
Table 5.1. Next we follow the algorithm in Fig 3.1 and achieve the results for the steady state
probabilities from the Gaussian elimination algorithm. Comparing the results with the exact
ones we may say that the Gaussian elimination algorithm gives precise results (to the eight
decimal) and only in states 9 and 11 mistakes are found.

State

N
um

be
r

Exact
Value

Computed
Value E

rr
or

1 2 3 4 5

1 2 3 4 5 (3,1,0) 8 0,009402703 0,009402703 0

(0,0,4) 1 0,000962837 0,000962837 0 (4,0,0) 9 0,002350674 0,002350674 0.000000002

(0,1,3) 2 0,004814184 0,004814184 0 (3,0,1) 10 0,00188054 0,00188054 0

(0,2,2) 3 0,024070919 0,024070919 0 (2,0,2) 11 0,001504433 0,001504433 0.000000001

(0,3,1) 4 0,120354595 0,120354595 0 (1,0,3) 12 0,001203546 0,001203546 0

(0,4,0) 5 0,601772974 0,601772974 0 (1,1,2) 13 0,00601773 0,00601773 0

(1,3,0) 6 0,150446243 0,150446243 0 (1,2,1) 14 0,030088649 0,030088649 0

(2,2,0) 7 0,037510811 0,037510811 0 (2,1,1) 15 0,007522162 0,007522162 0

Table 5.1 Comparison of numerical results for calculated steady-state probabilities using exact
method and Gaussian elimination

5.2 EXAMPLE 2

Consider two customers circulating among three nodes. When a customer has received
service of mean duration 1/1  at the first station, it queues with probability 12p at station two

for service of mean duration 2/1  , or with 13p at station three with a mean service duration

3/1  . After completion of services at stations two or three, customers return with probability 1
back to station one. The state transition rate diagram is shown in Fig. 5.1 (b). In this diagram we
represent a continuous-time Markov chain with possible transitions between nodes. The
transition rates between the states are 6.04.0321 1312321  pp . The
numeration of the states represents the total number of customers in each node.

Firstly is computed the exact values for the steady state probabilities, using a
substitution process. These values can be for comparison with the iteration vector. Next were
used the power method algorithm to compute the steady state probabilities, reaching 45
iterations form where was received accuracy to the sixth decimal, as is shown in Table 5.2.
Afterward from algorithm on Fig. 4.2 were computed probabilities according to Jacobi�s
method. The obtained results were better, but for their receiving it is necessary to provide much
more iteration steps � 300. The power method converges faster for this network and gives
results which are enough precise.

Power Jacobi
State Exact

45 Error 300 Error

(2,0,0) 0.6578947368 0.6578940535 -0,0000006833 0.6578947398 0,0000000030

(1,1,0) 0.1315789474 0.131579464 0,0000005166 0.1315789172 -0,0000000302

(0,2,0) 0.1315789474 0.131578764 -0,0000001834 0.1315789478 0,0000000004

(1,0,1) 0.02631578947 0.0263160561 0,0000002666 0.02631578619 -0,0000000033

(0,1,1) 0.02631578947 0.0263157728 -0,0000000167 0.02631578846 -0,0000000010

(0,0,2) 0.02631578947 0.0263159728 0,0000001833 0.02631582059 0,0000000311

Table 5.2 Comparison of numerical results for calculated steady-state probabilities using exact
method, Power method and Jacobi�s method

CONCLUSIONS

Basic direct and iterative methods for steady-state analysis of Markov chains are
examined by Gaussian Elimination method and Grassman method, as well as Power, Jacobi�s
and Gauss-Seidel�s method. Numerical results for two networks are compared, using exact
methods, Gaussian elimination, Power and Jacobi�s method. The Jacobi�s method is of less
practical importance due to its slow pattern of convergence. The Power method is a reliable
iterative method, though it sometimes tends to converge slowly. It can also be used as a method
for computing the transient state probability vector of a DTMC. Applicability of the Gaussian
elimination algorithm is limited to medium size (around 500 states) Markov models and it
suffers from round-off and cancellation errors, as well as numerical difficulties created by
subtractions of nearly equal numbers, but gives good results.

BIBLIOGRAPHY

[1] Bhalai, S. (2002), Markov Decision Processes: the control of high-dimensional systems,
Universal Press, Amsterdam, The Netherlands, 142 pp;
[2] Bolch, G., Greiner, S., Meer, H, Trivedi, K., (1998), Queueing Networks and Markov
Chains: Modelling and Performance Evaluation with Computer Sciene Applications, New York,
John Wiley& Sons, 726pp;
[3] Boxma, O., Koole, G., Liu, Z. (1994), �Queueing-theoretic solution methods for models of
parallel and distributed systems�, Performance Evaluation of Parallel and Distributed Systems -
Solution Methods, CWI Tract 105 & 106, CWI, Amsterdam, The Netherlands, pp. 1-24;
[4] Radev, D., Denchev, V., Rashkova, E. (2005), �Approximations Algorithms for Steady-State
Solutions of Markov Chains�, Proceedings of the International Conference on Computer
Systems and Technologies CompSysTech�2005, Varna, Bulgaria;
[5] Trivedi, K., (2001), Probability and Statistics with Reliability, Queuing, and Computer
Science Applications, New York, John Willey & Sons, 830pp.

