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Abstract

The paper is devoted on methods and algorithms for steady-state
analysis of Markov chains. Basic, direct and iterative methods for
steady-state analysis of Markov chains are concerned, where Gaussian
Elimination method and Grassman method, as well as Power, Jacobi ’s
and Gauss-Saidel’s methods are implemented. Algorithms for
computation of steady-state probability vector for finite Markov chains
are developed. Comparison of numerical solutions to exact equilibrium
solution for local-balance equation of Discrete-Time Markov Chain is
given. Example and numerical results for feedback networks of
Markovian queues are shown.
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1. INTRODUCTION

Markov processes provide very flexible, powerful, and efficient means for
description and analysis of dynamic (communication, computer) system properties.
Performance and dependability measures for communi cation networks can be derived and
evduated with steady-state andysis of Discrete-Time Markov Chains (DTMC) and
Continuous-Time Markov Chains (CTMC). Direct methods and iterative methods can be
used for numerical solution steady-state analysis of Markov chains [1]. Direct methods
operate and modify the parameter matrix, and use a fixed amount of computation time



independent of the parameter values [4], but are subject to accumulation of round-off
errors and have difficulties with sparse storage [2].

Iterative methods are based on the property of successive convergence to the
desired solution. The evaluation can be terminated if iterates are sufficiently close to the
exact value. The main advantage of iterative methods, compared with direct methods is
that they preserve the sparsity of the parameter matrix [3], because efficient sparse
storage schemes and efficient sparsity-preserving algorithms can be used. Other
disadvantage of iterative methods is that convergence is not aways guaranteed and
depends on the method. The rate of convergence is highly sensitive to the values of
entries in the parameter matrix [5].

One of important tasks here is receiving numerical solutions to exact equilibrium
solution for local-balance equation of discrete-time Markov chain. Thisis very interesting
for modeling of computer and communication networks, especially with heavy tailed
traffic. These traffic processes are describing with discrete-time Markov chains,
continuous-time Markov chains and ergodic Markov chains. That’s why in this research
is working out agorithms for numerical solution of equilibrium for local-balance
equation of discrete-time Markov chain. On the base of numerical solution methods is
suggesting a procedure for steady state probability vector.

2. STEADY-STATE ANALYSISOF MARKOV CHAINS
For computation of steady-state probability vector of ergodic Markov chains most
often is using the following mode. Setting v = vP , and 0=xQ, can be written (2.1).
O=v(P-1) (2.1
Therefore, both for discrete-time and continuous-time Markov chains, a linear
system (2.2) need to be solved:
0=xA (2.2
Duetoitstype of entries representing the parameters of a Markov chain, matrix A
is singular and it can be shown that A is of rank n-1 for any Markov chain of size|S| =n.

It follows immediately that the resulting set of equations is not linearly independent and
that one of the equations is redundant. To yield a unique, positive solution, a
normalization condition have to be applied on the solution x of equation0=xA . We
directly impose the normalization condition into the (2.2) with (2.3).
x1=1 (2.3)
This can be regarded as substituting one of the columns (say, the last column) of
matrix A by the unit vector. The resulting linear system of non-homogeneous equationsis
shownin (2.4).
b=xA, b=[00,..,0] (2.9
For any given ergodic continuous-time Markov chains, a discrete-time Markov
chains can be constructed, which yid ds an identical steady-state probability vector as for
the CTMC. Consider the generator matrix Q —[q; ] of a continuous-time Markov chains,

whereis formulated (2.5),
P=Q/q+I (2.5

;| should be avoided

where g is chosen such that > max; ;_s

qij| . Setting q = maXx; ;s



in order to assure aperiodicity of the resulting DTMC [2]. The resulting matrix P can be
used to determine the steady-state probability vector w=v, by solving

v=vP and vl1=1. This method, is used to reduce a CTMC to a DTMC, and is

called randomization or sometimes uniformization in the literature [3]. On the other hand,
atransition probability matrix P of an ergodic DTMC is given, and generator matrix Q of
a CTMC can be defined according to (2.6).

Q=P-I (2.6)

By solving 0=zQ under the condition®1=1, the desired steady-state probability
vector 7t = v can be obtained.

To determine the steady-state probabilities of finite Markov chains, different
approaches for the solution of alinear system of the form 0=xA are used. In this case
both direct and iterative numericd methods and techniques can lead to closed-form
results. While direct methods yield exact results, iterative methods are generally more
efficient, both in time and space. Disadvantages of iterative methods are that for some of
them no guarantee convergence given in general. Since iterative methods are
considerably more efficient in solving Markov chains, they are commonly used for larger
models. For smaler modds with less than a few thousand states, direct methods are
religble and accurate. Though closed-form results are highly desirable, they can be
obtained for only a small class of models that have some structure in their matri x.

3. DIRECT METHODS FOR NUMERICAL SOLUTION

The closed-form solution methods are applicable when Markov chains possess
specid structures. For Markov chains with a more genera structure, we need to refer to
numerical methods. There are two broad classes of numerical methods to solve the linear
systems of equations. direct methods and iterative methods. Direct methods operate and
modify the parameter matrix. They use a fixed amount of computation time independent
of the parameter values and we don’t aim to reach convergence. The use of sparse storage
is difficult since original zero entries can become non-zeros. Direct methods are aso
subj ect to accumulation of round-off errors.

There are many direct methods for the solution of a system of linear equations.
Some of them are restricted to certain regular structures of the parameter matrix that are
of less importance for Markov chains, since these structures generally cannot be assumed
in the case of a Markov chain. Among the most commonly applied techniques are the
Gaussian eimination agorithm and a derivative of it - Grassmann's algorithm. The
origina version of the agorithm is usually referred to algorithms of Grassmann, Taksar,
and Heyman (GTH), which are based on arenewal argument [5]. There is a newer variant
where a simple reation to the Gaussian dimination algorithm is done. The Gaussian
dimination agorithm suffers sometimes from numerical difficulties crested by
subtractions of nearly equa numbers. It is exactly this property that is avoided by the
GTH agorithms and its variant through reformulations rd ying on regenerative properties
of Markov chains. Cancellation errors are conveniently avoided in this way.



3.1 GAUSSIAN ELIMINATION
The idea of the agorithm is to transform the system of eguations (3.1), into an
equivalent one by applying dementary operations on the parameter matrix that preserve
therank of the matrix.
Bg0Xo + Xy + o+ 8y g Xy =By,
Qg Xo + 833Xy + o+ 8y g Xy =Dy, (3.1)

Aon1Xo T Aup 1 Xy T+ @ g1 Xng =By g

As a result, an equivalent system of linear equations specified by (3.2) with a
triangular matrix structure is derived, from which the desired solution x, which is
identical to the solution of the original system can be obtained:

(n-1) _ wh(n-1
(n-2) ao(’o 2)XO _ bo( 2
n— n— n—
Ay Xotayy X =b", (3.2

aé?ﬁ_lxo + al(,on)—lxl oot argo—)l,n—lxn—l =by ;.

If the system of linear equations has been transformed into a triangular structure,
the final results can be obtained by means of a straightforward substitution process.

To arrive a system (3.2), an dimination procedure first needs to be performed on
the original system (3.1). Informally, the algorithm can be described as foll ows; first the
n'" equation of (3.1) is solved forx. ,, and then X, is eliminated from all other n-1

equations. Next, the (n-1)" equation is used to solve for X, ,, and, again, X, , is
eiminated from the remaining n-2 equations, and so forth. Findly, (3.2) results, where

a¥ denotes the coefficient of x, in the (j+1)™ equation, obtained after the k™"
elimination step.

The Gaussian eimination procedure takes advantage of edementary matrix
operations that preserve the rank of the matrix. Such e ementary operations correspond to
interchanging of equations, multiplication of equations by a real-valued constant, and
addition of a multiple of an equation to another equation. In matrix terms, the essentia
part of Gaussian eimination is provided by the factorization of the parameter matrix A
into the components of an upper triangular matrix U and a lower triangular matrix L.

As aresult of the factorization of the parameter matrix A, the computation of the result
vector X can split into two simpler steps.

b=xA=xUL=yL. (3.3)

Now the Gaussian dimination algorithm can be summarized as follows from Fig.
3.1



STEP 1. Construct the parameter matrix A STEP 3: Compute the intermediate results

and the right-side vector b according to: y according to yL =b or, compute the
b=xA, b=[00,..,01]; intermediate results with the result from
STEP 2: Carry out eimination steps or, XU = (b5"™™,b{"?,..., b, ,) according to:
apply the standard algorithm to split the ’ - - aéﬁl).
parameter matrix A into upper triangular  b* =b{*™® —b{? (k_l)'J :
matrix U and lower triangular matrix L h ok n—k.n—l|<( 0
such that A=UL holds. Note that the “Wnere¢ J=n—k-1ln- A
parameters of U can be computed with: STEP 4. Perform the substitution to yield
_ thefinal result x accordingto XU =Yy by
0, iJ—:nn—_Lkn_ _lzn - IE__ZKO applying the formulae:
a,(jk) = B ky : b
! _ _ n—k, j . Xy = s
al? —al? a(k_l)J .otherwise , 7070
n—k,n—k b(n—j) j-1 af(n_—])
and the computation of L can be X;= '(nfj) - (r’ij)xk, i=12,..,n-1.
deliberately avoided. aj,j k=0aj

Fig. 3.1 Algorithm for Gaussian Elimination

3.2 THE GRASSMANN ALGORITHM

Grassmann's algorithm is a numerically stable variant of the Gaussian eimination
procedure. The agorithm completely avoids subtractions and it is therefore less sensitive
to rounding and cancellation errors caused by the subtraction of nearly equal numbers.
Grassmann's agorithm was originaly introduced for the andysis of ergodic, discrete-
time Markov chains X = {Xn; n=0, 1,...} and was based on arguments from the theory of
regenerative processes [3].

Thetransition rates of a new Markov chain, having one state less than the original

one, are defined. This dimination step, i.e, the computation of aj'i is achieved merely
by adding non-negative quantities to originally non-negative values q;;, j #i. Only the

diagonal eements ¢,; and ai'i are negative.
The dimination procedure is iteratively applied to the generator matrix with
entries g of stepwise reduced state spaces until an upper triangular matrix results,

where g denotes the matrix entries after having applied dimination
stepk, 1< k <n-1. Finaly, each dement g™ on the main diagonal is equal to -1.

The dimination is followed by a substitution process to express the relations of
the state probabilities to each other. To yidd the fina state probability vector the
normalization condition must be applied. Grassmann's algorithm is presented in terms of

aCTMC generator matrix and the parameter matrix must initially be properly defined:



A _JQ, forCTMC STEP 3: Forl =12,....n—1:
STEPl-A‘{P—L forDTMC -
1-1
STEP2: For | =n-1,n-2,...1: x = xa"".
i=0
n—l-
afi' j<l,
li 1D ' i = STEP4: For | =01...,n—1:
aI,m
m=0 L. X:
. (n-1-1) 5 (n-1-1) N
L I . g I d S
zal(,rr:I—l) i<l-1 = )
0
-1 j=i=l
0 j=li<l

Fig. 3.2 The Grassmann algorithm

In matrix notation, the parameter matrix A is decomposed into factors of an upper
triangular matrix U and alower triangular matrix L such that the following equations hold.
0=xA =xUL. (3.4

Of course, any solution of 0=xU is also a solution of the originad equation0 = XA..
Therefore, there is no need to represent L explicitly. Although cancellation errors are being
avoided with Grassmann's agorithm, rounding errors can still occur, propagate, and accumul ate
during the computation. Therefore, applicability of the algorithm is aso limited to medium size
(around 500 states) Markov models.

4. ITERATIVE METHODS FOR NUMERICAL SOLUTION

The main advantage of iterative methods over direct methods is that they preserve the
sparsity of the parameter matrix and effident sparsity-preserving agorithms and sparse storage
schemes can be used. A good initial estimate can speed up the computation considerably. The
evaluation can be terminated if the iterates are sufficently close to the exact vaue, i.e, a pre-
specified tolerance is reached. Finally, because the parameter matrix is not changed in the
iteration process, iterative methods are not subject to accumulation of round-off errors. The
main disadvantage of iterative methods is that convergence is not always guaranteed and
depending on the method, the rate of convergence is highly sensitive to the values of entriesin
the parameter matrix.

4.1. CONVERGENCE OF ITERATIVE METHODS

Convergence is a very important issue for iterative methods that must be dealt
consciously. A heuristic approach can be applied for choosing appropriate techniques for
decisions on convergence, but there are no genera agorithms for the seection of such a
technique. Because the desired solution vector is not known, an estimate of the error must be
used to determine convergence. A tolerance level ¢ must be specified to provide a measure of

how close the current iteration vector x® isto the desired solution vector x. New Y ork, Some
distance measures are often used to evaluate the current iteration vector x in relation to some
earlier iteration vectors x| <k . If the current iteration vector is "close enough” to earlier
ones with respect to ¢, then this condition is taken as an indicator of convergence to the final
result. If ¢ istoo small, convergence could become very dow or not take place at al. If ¢ is

too large, accuracy requirements could be violated or, worse, convergence could be wrongly
assumed. Some appropriate norm functions have to be applied in order to compare different



iteration vectors. Size and type of the parameter matrix should be taken into consideration for
the right choice of such a norm function. Concerning the right choice of ¢ and the norm
function, we can say that components x; of the solution vector can differ significantly from
each other.

4.2 POWER METHOD

The Power method is a rdiable iterative method for the computation of the steady-state
probability vector of finite ergodic Markov chains. It sometimes tends to converge slowly and
the solely condition needed for convergence is the transition probability matrix P to be
aperiodic, and then irreducibility is not necessary. The power method follows the transient
behavior of the underlying discrete-time Markov chains until some stationary, not necessarily
steady-state, convergence is reached. Therefore, it can aso be used as a method for computing
the transi ent state probability vector v(n) of aDTMC.

Equation v = vP suggests starting with an initial guess of some probability vector v
and repeatedly multiplying it by the transition probability matrix P until convergence to v is
reached, with lim,__v®" =v. Since ergodicity, or at least aperiodicity of the underlying
Markov chain are assumed, this procedure is guaranteed to converge to the desired fixed point
of the unique steady-state probability vector. A single iteration step is as foll ows from (4.1).

v —yOp >0, (4.1)
The reation between the iteration vector at step i and the initial probability vector can be
presented as (4.2).

v =yOPp >0, 4.2)

To yield the final result of the steady-state probability vector v only a renormalization
remains to be performed. The speed of convergence of the power method depends on the

relative sizes of the eigenvalues. The closer non-dominant eigenvalues are equals to 1, which
slower the convergence. The agorithm of the power method is shown on Fig. 3.1.

STEP 1: Select g appropriately: STEP 2:Repeat until convergence:
A=lP STEP 2.1: v(™ =vVA ;
~1Q/q+1;
STEP 2.2: If f(ﬂv<”*l>,v<'+l> )<el<n
0 0 0 0
VO = (VOO v0,).

THEN convergence = true;

Select convergence criterion ¢, and let
STEP 2.3: n=n+11=1+1.

n = 0. Define some vector norm function
(v v =1

Ty
STEP 3 =2 A
Set convergence = false. M

Fig. 4.1 The power method algorithm

4.3. JACOBI’SMETHOD
Let define the system of linear equations (4.3).

b=xA. 4.3
The normalization condition may or may not be incorporated in (4.3). The parameters of
both DTMC and CTMC are given by the entries of the matrix A = [aj] . The solution vector x



will contain the unconditional state probabilities. If the normalization is incorporated, we have

b =[0,0....,01], and b = 0 otherwise Consider thej™ equation from the system (4.3) as (4.4).

b =>ax. (4.4)
ieS

Solving (4.4) for X; leadsto (4.5).

b, - 23X
X; =————. (45)
a;

Any given approximate solution X =[X,,X,,...,X ;] can be inserted for the variables
X;,i # ], ontheright side of (4.5). From these intermediate values, better estimates of the X;

on the left side of the equation may be obtained. The iterative method requires applying this
procedure repeatedly and in paralld for all n equations. The values X* of the k™ iteration step
are computed from values obtained from the (k - 1) step for each equation independently as
(4.6).

b, — > a;x*"”

(k) _ %] :
Xj) =—""—— VjeS. (4.6)
i

Theiteration may be started with an arbitrary initial vector X°. Note that the equations
can be evaluated in paralld, afact that can be used as a means for computationa speed-up. The
method is called method of simultaneous displacement or, simply, the Jacobi method. Since the

method is quite simple, it suffers from poor convergence and hence is rarely applied in its raw
form. The algorithm is presented on Fig. 4.2,

STEP 1: Define parameter matrix A and b STEP 2: Repeat until convergence:
properly from generator matrix Q or
transition probability matrix P.

v/ Chooseinitial vector x©; STEP 2.2: If f(”x(k) - x(k")H)< £

v' Choose convergence criterion ¢ .

STEP2.1: x® =(b+x* (U +L)D*;

Then convergence =true;

v .
Choose some nor m function Esek=ktl and |e {lk}

(k. xO k21
(k)
X
v Slit parameter matrix A=D-L-U.  STEP3: 3}“ =
v convergence=false, and k =1 =1. J.Z:(:)XJ'

Fig. 4.2 The Jacobi 's method algorithm
Splitting the matrix A=D-L-U into its constituents of the diagona matrix D, the strictly
lower-triangular matrix L, and the strictly upper-triangular matrix U provide a way to present
the main computation step of the Jacobi’s method in matrix notation, asis shownin (4.7).

x® = (b+x*PU+L)D. 4.7)

The Jacobi’s method is of less practica importance due to its slow pattern of
convergence. But techniques have been derived to speed up its convergence, resulting in well-
known a gorithms such as Gauss-Seidel iteration.



4.4 GAUSS-SEIDEL METHOD
To improve convergence, a given method often needs to be changed only slightly. We
can serialize the procedure from (4.6) and take advantage of the already updated new estimates

in each step. Assuming the computations to be arranged in order 0,1,...,n—1,, where |S| =n, it
immediately follows, that for calculaion of the estimates x{, dl j previously computed

estimates x i < j , can be used in the computation. Taking advantage of the more up-to-date

information, we can significantly speed up the convergence. The resulting method is caled the
Gauss-Seiddl iteration and it main principleis presented in (4.8).

j-1 n-1
b, _{Z(; a X + -,Zla” X<y +J
X = - ki , VjeS. (4.8)

ajj

Note that the order in which the estimates x{’ are calculated in each iteration step can

have a crucial impact on the speed of convergence. Most often, the matrices of Markov chains
are sparse and the interdependencies between the equations are limited to a certain degree, and
parald evaluation might still be possible, even if the most up-to-date information is
incorporated in each computation step. The equations can deliberatdy be arranged so that the
interdependencies become more or less effective for the convergence process. Apparently, a
trade-off exists between the pattern of convergence and paossible speedup due to paraldism. In
matrix notation, the Gauss-Seidd iteration step iswritten as (4.9).

x® =(b+x I D-U)?, k=1 (4.9)
Reflecting the Gauss-Seidd step more obviously, we can rewrite his approach as (4.10).
x® = (b +x®U + x*L )D‘l, k>1. (4.10)

5. COMPARISON OF NUMERICAL SOLUTION METHODS

51 EXAMPLE 1

We consider an arbitrary connected three-node network with four customers. The sate
transition rate diagram is shown in Fig. 5.1. In this diagram are represented possible transitions
between nodes of Markov chain. The transition rates between the states are taken equal to
=05 1,=04 pu,=0.1. The numeration of the states represents the total number of

customers in each node. Consider receiving of local balance for two examples.

Fig. 5.1 Sate-transition rate diagram showing local balance for a) example 1 and b) example2



Firstly we write down the local balance equations, and then we find the solution, by a
substitution process, from where we get the exact steady-state probabilities, as indicated in
Table 5.1. Next we follow the algorithm in Fig 3.1 and achieve the results for the steady state
probabilities from the Gaussian dimination algorithm. Comparing the results with the exact
ones we may say that the Gaussian eimination algorithm gives precise results (to the eight

decimal) and only in states 9 and 11 mistakes are found.

(o] .
o R el - PO P T IS
Pz
1 2 3 4 5 |(3,1,0) 8 [0,009402703 0,009402703 0
(0,0,4) | 1 | 0,000962837 | 0,000962837 | 0 |(4,0,0) © |0,002350674 0,002350674 0.000000002
(0,1,3) | 2 | 0,004814184 | 0,004814184 | 0 |(3,0,1) 10 |0,00188054 0,00188054 0
(0,2,2) | 3 | 0,024070919 | 0,024070919 | 0 |(2,0,2) 11 |0,001504433 0,001504433 0.000000001
(0,3,1) | 4 | 0,120354595 | 0,120354595 | 0 |(1,0,3) 12 |0,001203546 0,001203546 0
(0,4,0) | 5| 0,601772974 | 0,601772974 | 0 |(1,1,2) 13 |0,00601773 0,00601773 0
(1,3,0) | 6 | 0,150446243 | 0,150446243 | 0 |(1,2,1) 14 |0,030088649 0,030088649 0
(2,2,0) | 7 | 0,037510811 | 0,037510811 | 0 |(2,1,1) |15 |0,007522162 0,007522162 0

Table 5.1 Comparison of numerical resultsfor calculated steady-state probabilities using exact
method and Gaussian €imination

52 EXAMPLE 2
Consider two customers circulating among three nodes. When a customer has received
service of mean duration 1/ g, at the first station, it queues with probability p,, at station two

for service of mean duration 1/ 4,, or with p;at station three with a mean service duration
1/ uy . After completion of services at stations two or three, customers return with probability 1

back to station one. The state transition rate diagramis shown in Fig. 5.1 (b). In this diagram we
represent a continuous-time Markov chain with possible transitions between nodes. The
transition rates between the states are =1 w,=2 u;=3 p,=04 p,=06. The
numeration of the states represents the total number of customers in each node.

Firstly is computed the exact values for the steady state probabilities, using a
substitution process. These values can be for comparison with the iteration vector. Next were
used the power method agorithm to compute the steady state probabilities, reaching 45
iterations form where was received accuracy to the sixth decimd, as is shown in Table 5.2,
Afterward from algorithm on Fig. 4.2 were computed probabilities according to Jacobi’s
method. The obtained results were better, but for their receiving it is necessary to provide much
more iteration steps — 300. The power method converges faster for this network and gives
results which are enough precise.



i - Power Jacobi
v =45 Error v =300 Error
(2,0,0) | 0.6578947368 | 0.6578940535 | -0,0000006833 | 0.6578947398 0,0000000030
(1,1,0) | 0.1315789474 | 0.131579464 0,0000005166 | 0.1315789172 | -0,0000000302
(0,2,0) | 0.1315789474 | 0.131578764 | -0,0000001834 | 0.1315789478 0,0000000004
(1,0,1) | 0.02631578947 | 0.0263160561 | 0,0000002666 | 0.02631578619 | -0,0000000033
(0,1,1) | 0.02631578947 | 0.0263157728 | -0,0000000167 | 0.02631578846 | -0,0000000010
(0,0,2) | 0.02631578947 | 0.0263159728 | 0,0000001833 | 0.02631582059 | 0,0000000311

Table 5.2 Comparison of numerical resultsfor calculated steady-state probabilities using exact
method, Power method and Jacobi ’s method

CONCLUSIONS

Basic direct and iterative methods for steady-state analysis of Markov chains are
examined by Gaussian Elimination method and Grassman method, as well as Power, Jacobi’s
and Gauss-Seidel’s method. Numerical results for two networks are compared, using exact
methods, Gaussian €imination, Power and Jacobi’s method. The Jacobi’s method is of less
practical importance due to its slow pattern of convergence. The Power method is a reliable
iterative method, though it sometimes tends to converge slowly. It can also be used as a method
for computing the transient state probability vector of a DTMC. Applicability of the Gaussian
eimination algorithm is limited to medium size (around 500 states) Markov modds and it
suffers from round-off and cancellation errors, as wdl as numerical difficulties created by
subtractions of nearly equal numbers, but gives good results.
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